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Abstract - This paper preents the dynamic equations 
describing the running of a hydropower unit and how 
to solve them. There are analysed the vectors, the 
eigenvalues and the calculation of the response to 
mass imbalance. 
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1. INTRODUCTION 
 

The equations of motion getting is made by applying 
the following steps: 
●       Determination of kinetic energy expression Ec, of 
strain energy Ed and virtual work function of external 
forces for the system components. 
●       Applying Lagrange equations form: 
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where: 1<i<N, N being the total number of system 
freedom degrees,   qi is the generalized coordinate of i 
order and,  Fqi, the generalised force. The equations of 
motion thus obtained can be written in matrix form: 
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[ FKCM    , (2) 

 

In which  M~ ,  C~ ,  K~ , are the inertion matrices, of 

harmonising şi global stiffness and gyroscopic effect, of 
NxN system order, {} is the strains vector 
corresponding to all  N freedom degrees of the system, 
and {F} is the vector of forces applied in the discreted 
mesh nodes. 
 
 

2. THE EQUATIONS OF MOTION 
 

After the quantization of the structure and choosing 
values of shaft speed, after calculating the static load 
forces in every bearing, dynamic coefficients of each 
bearing are determined and the global matrix of inertia 

 M~  are built, of damping  C~  and rigidity  K~ , by 

adding the corresponding elementary matrices. The 
addition of elementary matrices is done by summing up 
the corresponding terms of each degree of freedom 
separately. There result equations of motion in matrix 
form: 

 

            )(
~~~

tFKCM     (3) 

 
In the above equation, the three global 

matrices are obtained as follows: 
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in which [MD],[M] and [MA] are the classical inertion 
matrices, [CD], [CA] and [CL] are the gyroscopic effect 
matrices and [K], [KF] and [KL] are the rigidity 
matrices,ND, NE and NL representing the number of 
disks of shaft elements and, respectively, of bearing. The 
matrices [MD], [M], [MA], [K] and [KF] are symmetrical; 
the matrices [CD] and [CA] are anti- symmetrical, and 
[CL] and [CK] are non- symmetrical. Consequently, the 

matrix  M~  is symmetrical, iar the matrices  C~  and  K~  

are non- symmetrical. 
As the the quantization of the rotor in elements is 

done so that node j+1 of an element is the same as the 
node j of the next element, the three global matrices, 
corresponding to the bearing supported rotor, are striped 
matrices, with constant bandwidth and equal to eight. 

If the global matrices were obtained after the 
quantization of the entire structure, rotor – bearings – 
carcass – foundation, they increase their bandwidth and 
their dimensions, reaching big matrices, correspondeing 
to thousands of nodes (fig.1) in which non-hachured 
spaces correspond top the spaces full of zeros 
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Fig. 1. Band width of global matrices 

 
3. THE SOLVING OF MOTION EQUATIONS  
3.1. Vectors and eigenvalues 
 

The main problem in the dynamics of rotors is the 
determination of critical speeds, of the speed of stability 
loss and of the response to mass imbalance. As 
imbalanced masses, the disc placed obliquely on the shaft 
and other types of external forces, do not modify critical 
speeds of the rotor sistem– bearings, to calculate the free 
precession, the right side of equation (3) is neglected, 
resulting: 

 

            0
~~~
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(7) 

 
Using substitution: 

 

    teX      (8) 

 
where e=2,718, equation (7) reaches: 
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where [I] is a unit matrix. 

The matrix in relation (9), is of a double order as 
compared with the order of the initial matrices, it is non-
symmetrical. The eigenvalue problem can not be 
transformed into a symmetrical one, finally complex 
solutions will be obtained for vectors and eigenvalues. In 
order to reduce the size of the matrix above, processing 
methods can be used by choosing a base of variable 
vector {} of eigenvectors corresponding to undamped 
vibration, vectors corresponding to the dominant modes 
of vibration, generally the first eigenmodes of vibration, 

and their number must be at least equal to the number of 
the first critical speeds that are intended to be 
determined. 

A transformation method commonly used now is the 
pseudo-modal method, which consists of a 
transformation of coordinates of the form:  

 
     d  (10) 

 
where the matrix [] represents the modal matrix 

corresponding to the first n eigenvectors, n being a lot 
smaller than the order of the matrices in the relation (7), 

 
        n ,,, 21   (11) 

 
Obtained by solving the problem of eigenvalues: 
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In the relation (12) the matrix  K~  is symmetrical 

being obtained from the matrix  K~  by annuling the non-

symmetrical terms. Considering the transformation (10) 
and multiplying to the left with []T, relation (7) 
becomes: 
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And after multiplications, it results: 
 

             0~~
 dKdCdM 

 (14) 

Where the new matrices obtained have the order 

nxn, a lot smaller than of the initial matrices. Next, to 
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determine the first n eigenmodes of vibration of the 
initial system, equation (14) is brought to standard form 
of eigenvalues, given in relation (9), which, once solved, 
leads to the appearance of values and complex 
eigenvectors. Thus, eigenvalues will be of the form 

 iA  ,  representing the damping coefficient, and 

 the eigenpulsation. For >0 the system  is unstable. 
Also, in the endthe eigenvectors {X} will be of a 
complex form, both their real and their imaginary parts, 
helping helping to draw ellipses precision movement 
along the rotor, the precision form of the shaft being 
generally spatial. 

The main advantage of pseudo–modal method is the 
fact that it reduces runtime and used memory, the results 
being very close to those obtained by the direct method, 
even for a relatively small n number of retained 
eigenvectors, by solving the symmetric problem of 
eigenvalues (12). 
 
 

3.2. Calculation of the response to mass 
imbalance 

 
Next is presented the way in which response to 

imbalance can be obtained in section i, considering 
concentrated, excentric masses, in sections j and k. 
Equation (3) can also be written under the form: 

 
tftftf sc  sincos)(1  

(15) 

 
where: 
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     (17) 
For the calculation of mass imbalance, equation (7) 

has the right side different from zero and equal with f1(t): 
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The solution will be as disruptive force, so: 
  

       tsintcos sc    

     (19) 
 
Replacing (19) in (18) and separating the terms in 

sin and cos from both members of the relation, there 
results the double-order system matrices compared to the 
initial matrices order: 
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the vector of unknown being: 
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Response to imbalance in the i section is obtained 

from the degrees of freedom of node i, which 
corresponds to elements 4i-3, 4i-2, 4i-1, 4i, for the terms 
of cos function and n+4i-3, n+4i-2, n+4i-1, n+4i, and, for 
those of sin function, n being the number of degrees of 
freedom of the system ui, from the vector of unknown. 
Retaining only the two-way movement of node i we can 
write: 
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The indices in relation (22) correspond to the place of 

the elements in the unknown vector, numbered from top 
to bottom. Relation (22) can also be written under the 
form: 
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or: 
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where: 
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Orbit of the precession motion of the center of 

the shaft in section i, defined by the vector r (t), is 
generally in the form of an ellipse ( fig2). 
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Fig. 2. Orbit of the precession motion of the center of 

the shaft 
Noting with A and B the big semi-axis, respectively 

the small semi-axis of the ellipse, there result their 
values: 
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where: 
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The type of precession is given by the sign of B 

so: 
 B>0 – precession is direct; 
 B<0 – precession is inverse; 
 B=0 – precession is linear. 

 
4. Conclusions 
 
1. Mathematical modeling of hydropower equipment 

vibration phenomena requires, in essence, 
determining the dynamic response of rotor-bearing 
assembly in the structure of HPA, when exercising 
perturbations on them. 

2. Mathematical modeling of vibration phenomena 
(sources impact, propagation in rotor-shaft assembly,) 
at HPA is very laborious, impossible to apply in the 
general case. 

3. A simpler version of solving the problem of dynamic 
response of a HPA is to use finite element method, 
whose main advantage is that it allows a relatively 
easy modeling of a complex system such as HPS, and 
also a possibility to assess the gyroscopic effect, the 
effect of the shearing force and of the axial one, of 
torsional moments, of the distortion of the shaft and 
of the hydrodynamic force on the vibration levels. 

4. Applying the finite element method at the analysis of 
vibrational processes of the HPA requires the 
following steps: setting up the associated network, 
writing the equations and assembling them, solving 
the system of equations, determination and 
interpretation of the response. 

6. For modeling of a rotor-bearing unit of a HPA, after 
establishing the axis system, in order to determine the 
kinetic energy of the rotor, of the shaft, of the 
potential shaft distorting energy and of the 
generalized forces in the bearings, it is necessary to 
use Lagrange’s equations, so that motion equations 
obtained in the form of matrices, lead by resolution, 
to the determination of the eigenmodes of vibration, 
of the loads and reactions in the bearings. 

7. Solving the assessment model of vibrations of a HPA 
requires the use of appropriate software, an example 
being the computer program, elaborated for this 
purpose, in the MATLAB environment. 
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