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Abstract - In this paper we propose a new method for 
solving the wind-power prediction problem, based on 
a recurrent neural network approach. Wind energy is 
free but the power supply generated from wind 
energy is not known in advance. Short-term wind 
power prediction becomes an extremely important 
field of research for the energy sector. Romania has a 
great potential for growth on short- to medium-term, 
for the wind energy industry. Because of its location 
along the western shore of the Black Sea, the average 
wind speed stands at about 25.2 kilometers per hour. 
The conferred results validate the proficiency of the 
described technique in short-term wind power 
forecast. 
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1. INTRODUCTION 
 

Romania has a great potential for growth on short- to 
medium-term, for the wind energy industry. Actually, 
Romania has the best wind energy sites in Eastern 
Europe according to Vestas Wind System A/S, the 
world’s largest maker of wind turbines. Hans Joern 
Rieks, the company’s president for central and Eastern 
Europe, said at a press conference in Bucharest, that 
Romania may produce as much as 14,000 megawatts of 
wind energy and may develop into a sustainable market. 
A study of Erste Bank considers Romania and especially 
the Region of Dobrogea with Constanta and Tulcea 
counties as the second best place in Europe to build WPP 
(Wind Power Plants). The average wind speed stands at 
about 25.2 kilometers per hour because of its location 
along the western shore of the Black Sea. The local 
industry has the potential to generate as much as 30.7 
billion kilowatt-hours a year, powering the equivalent of 
Ireland, Serbia, or Peru and giving Romania an edge 
against other East European nations. Vestas has installed 
22 wind turbines in Romania, with a total capacity of 44 
megawatts, according to the latest data available as of 
June 30 2010. The Randers, Denmark-based Company 
currently has under construction three wind projects in 
Romania in the southern region of Dobrogea. Two of 
them, with a total capacity of 228 megawatts, are for 
EDP-Energias de Portugal SA, Portugal’s biggest utility. 
Other companies installing turbines in Romania include 
EDP, CEZ AS, which is the Czech Republic’s largest 
power distributor, E.ON, Germany’s biggest utility, 

Iberdrola SA and Enel SA. Wind energy is free but the 
power supply generated from wind energy is not known 
in advance. Electricity generated from wind power can be 
highly variable at several different timescales: from hour 
to hour, daily, or seasonally. Annual variation even if 
exists it is not as significant. The short-term (hourly or 
daily) predictability of wind plant output is related to 
variability.  

Wind energy, like other electricity sources, must be 
"scheduled". Wind power forecasting methods are used, 
but predictability of wind plant output remains low for 
short-term operation. Short-term wind power prediction 
becomes an extremely important field of research for the 
energy sector, since the system operators must handle an 
important amount of variable power. 

In the technical literature, we can find two major 
approaches [1] to forecast wind power:  
1. physical methods: 
 Require many physical considerations to gain the best 

prediction precision. 
 The input variables will be physical or meteorology 

information. 
 They present advantages in long-term prediction. 
2. statistical methods: 
 Aspire at finding a relationship between the on-line 

measured power data. 
 They will use the historical data of the wind farm. 
 Do well in short-term prediction, 
 They are time-series-based models: auto regressive 

(AR) and auto regressive integrated moving average 
(ARIMA). 

In the recent years, it has been reported that 
artificial-based models outperformed others in short-term 
prediction [2, 3]. 

This article is organized as follows: after a short 
discussion about recurrent neural networks where we 
argue why we chose them, we focus on learning with 
fixed points and in the third chapter, we describe the 
propose RNN with its architecture. The fourth chapter 
contains numerical results from a real world case study, 
particularly our RNN prediction results. We tested the 
proposed RNN using data sets collected from the ANM 
(National Meteorology Administration) website. In the 
last chapter, we raise some interesting conclusions and 
talk about plans and future works.  
 
 
2. RECURRENT NEURAL NETWORKS 

 
2.1. Why RNNs? 
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Before answering this question, we would like to 

show why we chose neural networks in the first place. 
Neural networks have been successfully applied for a 
long time in various domains such as research, business 
and industrial environments [4, 5]. They have been used 
to solve various problems like data prediction, 
classification and function approximation. Neural 
networks (NN) are simple, powerful and flexible tools 
for forecasting but they have some needs [6, 7, 8]. First, 
we must verify if there are enough data for training. An 
adequate selection of the input–output samples, an 
appropriated number of hidden units and enough 
computational resources available are other needs 
required by a NN based solution. NNs are data-driven 
and have the well-known advantages: 
 They are able to approximate any nonlinear function. 
 They can solve problems where the input–output 

relationship is neither well defined nor easily 
computable. 

 Knowledge is automatically acquired during the 
learning process but this knowledge cannot be 
extracted from the trained network. 

Many of the real-world problems, which one might 
think would require recurrent architectures, have solvable 
solutions by using layered architectures. For this reason, 
we would advise engineers to try, first, the layered 
architecture before resorting to the “big gun" of 
recurrence. The recurrent networks are often avoided 
because of the fear for unreasonable learning hours and 
incomprehensible algorithms and mathematics. 
Therefore, there is no reason to use a recurrent network 
when a layered architecture suffices. On the other hand, 
if recurrence is needed, there is the availability of an 
overabundance of learning algorithms. The reason for 
exploring recurrent architecture lies in their potential for 
dealing with temporal behaviors.  

However, the question still rises: “Why RNNs for 
short-term wind power prediction when we already have 
so much layered architecture that could solve this 
problem?” The relative superiority of recurrent networks 
to feed-forward networks in forecasting is not just due to 
its ability to model time series data with lower errors, but 
rather to model a parsimonious training set. With the 
rapid growth of processing speed in the last years, the 
context in which we define an efficient method changed. 
The capabilities of many digital electronic devices are 
strongly linked to Moore's law. Processing speed, 
memory capacity, sensors and even the number and size 
of pixels in digital cameras are improving at exponential 
rates. This exponential improvement has given us a new 
perspective on the prediction problem. Nowadays the 
learning time, a parameter that was critical in designing 
an efficient NN based solution, is not such a big problem 
like 10 years ago, because we already have on the market 
processors similar to Intel Core i7 990x that can reach 
speeds of 4.5-5 GHz. Consequently, we propose a model 
for the problem of short-term wind power prediction 
focused more on the prediction accuracy then the 
learning time. 
 
 
 

2.2. Learning with fixed points 
 

One problem with fixed points is that recurrent 
networks do not always converge to them [9, 10]. There 
are a number of special cases that guarantee convergence 
to a fixed point. Some simple linear conditions on the 
weights such as zero-diagonal symmetry (wij=wji, wii=0) 
guarantee that Lyapunov function decreases until a fixed 
point is obtained: 
 

 
 

Wij are the weights of the connections from unit i to 
unit j and yi is the activation level of unit i: 
 

 
 

In addition, the general equation that model the 
neural network is: 
 

 
 

Where Ǿ is an arbitrary differentiable function and Ii 
are the inputs. Aliya has shown that a unique fixed point 
would be achieved regardless the initial conditions, if: 
 

 
 

Other empirical studies show that applying fixed 
point learning algorithms stabilizes the networks [11, 
12]. However, the fixed point learning algorithms can 
still have problems even when it is guaranteed that a 
network settles to a fixed point. The learning procedures 
compute the derivative of some error measure. This 
gradient is used by an optimization procedure in order to 
minimize the errors. The optimization procedures assume 
that the mapping from the network's internal parameters 
to the resulting errors is continuous and can fail when 
this assumption is violated. This means that the learning 
algorithm changes the locations of the fixed points by 
varying the weights. Accordingly, it is also possible for a 
result to stumble upon such a discontinuity. This will 
induce errors, which will appear suddenly.  
 
 
3. THE PROPOSED METHOD  

 
The time scales we use in this short-term prediction 

solution are in the order of some days for the forecast 
horizon and from minutes to hours for the time-step. For 
the purpose of time series prediction, a RNN can be 
considered to be a general nonlinear mapping between a 
subset of the past time series and the future time series 
values. The proposed architecture is presented in Fig. 1. 
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Figure 1 The proposed RNN 

 
The RNN has two context layers: the Elman context 

layer and the Jordan context layer, both with some 
differences from the original Elman and Jordan recurrent 
neural networks. The Elman context layer differs from 
the original Elman RNN because the two context neurons 
obtain inputs from the output of the hidden layer after a 
delay of one time unit, and from itself. In the Jordan 
context layer the difference is that the context neurons 
obtain inputs from the output error of the network after a 
delay of one time unit, and from itself. In both context 
layers there are two neurons with self-feedbacks. For 
predicting time series in the output layer, we need just 
one neuron. We use also two neurons in the input layer 
because it has been reported that every data point in a 
time series is only strongly dependent on the immediate 
past two values [12, 13, 14]. The linear activation 
function is used in the output layer, the Jordan context 
layer and the Elman context layer. The sigmoid 
activation function is used in the hidden layer.  
 
 
4. A CASE STUDY  
 
4.1. Neuro Solutions 
 

Neuro Solutions is a graphical neural network 
development tool, which can easily create a neural 
network model for the input data. This software 
combines a modular design interface with advanced 
learning procedures. Neuro Solutions provides the 
power and flexibility needed to design the best neural 
network for our problem. 
 

 
Figure 2 Neuro Solution Breadboard 

 
4.2. Calculation of wind power 
 

Wind is made up of moving air molecules [15] and 
these have mass. Any moving object with mass carries 
kinetic energy in an amount, which is given by the 
equation: 

 
Kinetic Energy = 0.5 x Mass x Velocity2                     (5) 

 
Air has a known density (around 1.23 kg/m3 at sea 

level), so the mass of air hitting our wind turbine (which 
sweeps a known area) each second is given by the 
following equation: 

 
Mass/sec (kg/s) = Velocity (m/s) x Area (m2) x 

Density (kg/m3)                                                          (6) 
 
Thus, the power (i.e. energy per second) in the wind 

hitting a wind turbine with a certain swept area is given 
by simply inserting the mass per second calculation into 
the standard kinetic energy equation given above 
resulting in the following vital equation: 

 
Power = 0.5 x Swept Area x Air Density x 

Velocity3                                                                       (7) 
 
Wind speeds in most of the world can be modeled 

using the Weibull Distribution [16]. This statistical tool 
tells us how often winds of different speeds will be seen 
at a location with a certain average wind speed. Knowing 
this helps us to choose a wind turbine with the optimal 
cut-in and cut-out speeds [17]. The cut-in speed is the 
wind speed at which the turbine starts to generate usable 
power. The cut-out speed is the speed at which the 
turbine hits the limit of its alternator and can no longer 
put out increased power output with further increases in 
wind speed. 
 
4.3. Prediction results 
 

We tested the proposed RNN using data sets 
collected from the ANM (National Meteorology 
Administration) website. The prediction results are 
shown below: 
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a) 
 

 
b) 

 

c) 
Figure 3 Prediction results a) a winter day b) a 

summer day c) a fallen day 

 
We randomly selected three days, one from each 

season, and predict the wind speed at each hour for these 
days. Our RNN results are illustrated in figure above. 
The blue line represents the real measured wind speeds 
collected from the ANM web site and the red line 
indicates the predicted values. To predict W (d, h), the 
wind speed at hour h of day d, we train the RNN with 
only last two values: W (d-1, h), W (d-2, h); it has been 
reported that every data point in a time series is only 
strongly dependent on the immediate past two values. 
The training is complete when we provide as inputs all 
wind speed values, for a number of n epochs. One epoch 
is finished when the entire training set is exposed to the 
RNN. The number of epochs is the number of steps of 
the training process, it is a dynamic value; we set it high 
and let it stop according to the validation set. The initial 
learning rate is 0.001, results in good coarse training 
quickly. For better performance, we used a schedule of 
0.0005 for two epochs, followed by 0.0002 for the next 
three, 0.0001 for the next three, 0.00005 for the next 
four, and 0.00001 thereafter. The learning rate is 
decreased by 79.4% of its value after every epoch. In 
order to implant fixed points into recurrent systems, the 
backpropagation technique is used. In fixed-point 
learning, the first action is the forward propagation of the 
activations. This procedure repeated for a certain number 
of times will induce the relaxation period. This has to be 
repeated until the network attains its own dynamic. After 
the net become stable, an error can be computed at the 
output. Then, the error is propagated backwards through 
the network. The error at each output can be multiplied 

by the relaxed activation for updating the weights. We 
have to select the relaxation time both in the forward and 
backpropagation phases.  

 

 
Figure 4 Learning rate evolution by epochs 

 
Table 1. Prediction errors 

Data/hour Winter day 
22.02.2010 

Summer 
day 

22.06.2010 

Fallen day 
22.10.2010 

0 +0.11 +0.12 -0.01 

1 -0.21 +0.3 -0.1 

2 +0.3 -0.1 +0.1 

3 +0.13 -0.4 -0.2 

4 -0.21 +0.3 +0.1 

5  +0.3 +0.3 -0.1 

6 +0.22 +0.2 -0.02 

7 -0.2 -0.2 +0.1 

8 +0.01 -0.2 -0.2 

9 +0.12 +0.2 +0.17 

10 -0.01 -0.3 -0.02 

11 +0.13 +0.2 +0.12 

12 -0.02 +0.1 +0.21 

13 -0.21 +0.15 -0.14 

14 +0.2 -0.02 +0.13 

15 +0.11 -0.01 -0.23 

16 -0.2 +0.1 -0.11 

17 -0.12 +0.01 +0.09 

18 -0.03 -0.2 -0.21 

19 -0.01 -0.2 -0.2 

20 +0.22 -0.26 -0.02 

21 +0.12 +0.2 +0.01 

22 +0.03 -0.2 +0.19 

23 +0.01 -0.1 +0.13 

AVERAGE +0.032 -0.002 -0.008 
AVERAGE 

OF 
ABSOLUTE 

VALUES 0.134 0.182 0.121 
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Figure 5 Prediction errors for each day and average values 

 
As we can see in the figure 5, we obtained very 

good prediction results proven by a very low average 
error rate. The secret is the joint usage of Neuro 
Solutions features and our innovative RNN 
architecture. Using Neuro Solutions 6, we can select 
the Fixed Point radio button in the Dynamic Control 
Inspector. If the network is not relaxed enough, the 
output activation will not be in the steady state and will 
produce an erroneous error estimate. The transmitters 
are a class of objects that test for a particular condition 
and perform global communications within Neuro 
Solutions breadboard. Transmitters have many 
potential applications, but here they will be used for 
controlling the relaxation time of the network in the 
forward and backward plans. The relaxation can be 
controlled by measuring the differential between two 
consecutive iterations. When the difference is smaller 
than a given threshold, we can assume that the network 
is stable.   
 
 
5. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we propose a RNN prediction model. 
This model is developed for the short-term wind power 
prediction based on the data collected from the ANM 
(National Meteorology Authority) web site. The 
presented results validate the proficiency of the 
proposed approach in short-term wind power 
prediction. Higher value of neurons in hidden layer 

may force the network to memorize. Lower value of 
neurons in hidden layer, would waste a great deal of 
training time in finding its optimal representation. 
More neurons require more computation, but they 
allow the network to solve problems that are more 
complicated. We plan to optimize the learning process 
to perform faster and develop a software solution based 
on the proposed method: 
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