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Abstract – The main task of the Transmission System 
Operator (TSO) is to provide a reliable and secure 
transmission network for the market participants. 
Worldwide the power systems are emerging: load 
variations, appearance of the competition within the 
power market, use of renewable energy sources and 
power transactions. All these facts are requesting a 
permanent focus regarding the power system develop-
ment and evolution. The transmission network expansion 
planning (TNEP) field comes in the forefront. It has as 
main goal to provide a safety, reliable and economical 
operation of the power system. Additionally, it has to 
fulfil the environment constraints and, most important, 
to support the development of the interconnections. 
Within the paper the mathematical model used TNEP 
is presented. In the following, a software tool is developed 
in Matlab, designed for probabilistic approach. The 
Romanian Power System is used as a case study.  
 
Keywords: power system, transmission planning, mathe-
matical model, congestion management. 
 
 

1. INTRODUCTION 
 

The transmission network expansion planning (TNEP) 
is a complex task involving engineering, technical and 
economical challenges. 

The goal of different TNEP approaches is to achieve 
expansion plans from both economic and system reliability 
point of view. The latter, in Chao et al [1], is achieved by 
Monte Carlo simulation. In the following TNEP is performed 
based on reliability. 

The competitive environment is characterized by a 
high degree of uncertainty and risk, compared with the 
monopolist one.  Taking into consideration these facts, 
for optimal operation of the power system, two directions 
necessary to be followed are emerging. The former refers 
to an advanced power flow analysis and operating conditions, 
the volatile characteristic of the loads being the main factor. 
The second is represented by an extremely detailed and 
advanced analysis, the set of monitored situations being 
extremely large, in contrast with a monopolist market. 
It involves an extended range of situations that is leading, 
in generally, to maximum loaded network element 
(congestions) operating conditions. 

The great majority of approaches specific to the 
deregulated environment are market based approach.  

Financial and engineering issues that consider economic 
as well as physical laws of generation, load and transmission, 
are required. 

The open access to the transmission system leads to 
unpredictable operating conditions. It is difficult to quantify 
the importance of different planning objectives belonging 
to several players, introducing other uncertainties. A 
solution is represented by the fuzzy logic approach, proposed 
by Buygi et al [2], [3]. Probabilistic tools are used for 
modelling random uncertainties. The stakeholder desire 
have a part to play is selecting the final expansion plan. 

Artificial intelligence techniques [4] (genetic algorithm, 
expert system, fuzzy) have been proposed. They are focusing 
on developing different methodologies for selecting from 
the candidates line set. 

Several fuzzy optimization mathematical models are 
proposed in Sun and Yu [5]. These models provide solution 
considering almost all constraints for TNEP. 

In [6] by Shrestha and Fonseka a framework for 
transmission planning in deregulated environment is 
proposed. Congestion management based TNEP approach. 
The optimal expansion plan is established following a 
comparison between the congestion cost and investment 
cost. 

A congestion management model which is appropriate 
for power pool is proposed by Fang and David in [7].  

Silva et al [8] presented mathematical model to solve 
the TNEP with security constraints using (N-1) security 
criterion. The authors are also considering the (N-2) 
criterion. 

Following the introduction presented within the 1st 
section of the paper, the authors are proposing the mathe-
matical model used for TNEP (2nd section). The 3rd 
section of the paper is focusing on consumed power 
forecasting methodology. Starting from the mathematical 
models a software tool is developed (4th section). A case 
study is presented within the 5th section, followed by 
discussing the results (6th section). Finally, the 7th section 
synthesizes the conclusion of the paper.  
 
 

2. MATHEMATICAL MODEL 
 

Starting from the steady state optimization [9]-[11], 
the mathematical model used for TNEP analysis is proposed. 
It contains additional specific elements (control variables 
and constraints), the objective function (OBF) having 
additional terms too. 
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 variables: 

 state variables – are the same as the ones defined 
within the power flow: 

  i , i N \ e ,  geP ,  iU , i C ,  giQ , i G  

 ij ijP ,Q , ij R , ijS , ij R  or ijI , ij R  (1) 

where: Ui, i – the absolute value and the phase of 
the voltage in bus i; Pge – the real power for the 
slack bus; Qgi – the reactive generated power; Pij, 
Qij, Sij – the power flow through the ij network 
element; N – the set of buses; C – the subset of the 
P-Q buses; G – the subset of the P-U buses; R – the 
set of the network elements. 

 control variables: 

 iU , i G , giP , i G\ e , 

 ijK , ij T , ij , ij T  (2) 

where: Pgi – the real generated power in bus i; Kij, ij – 
the value and the phase for the transformer ratios; 
T – the subset of the transformers and autotrans-
formers; e – the slack bus. 

 constraints: 

 equality constraints – are the same as the ones defined 
within the power flow; 

 
( , , , ) 0 ,

( , , , ) 0 ,

   


   

i gi ci

i gi ci

P P P i N

Q Q Q i N

U δ K Ω

U δ K Ω
 (3) 

 inequality constraints: 
 the constraints corresponding to the state variables: 

  min max
ge ge geP P P  

 min max
gi gi giQ Q Q , i G    (4) 

 min max
i i iU U U , i C    

 unlike the OPF model, in case of the following 
constraints, the superior limitation is avoided, 
obtaining: 

 ( , , , ),min
ij ijP P ij R U δ K Ω ;  

 ( , , , ) ,min
ij ijS S ij R U δ K Ω  (5) 

where: U and   – the array of absolute values and 

phases for the bus voltages; K,  – the array of 
absolute values and phases for the transformer ratios; 

ijP , ijS , ij R  – real and apparent power flows 

through the ij network element, from the bus i to 

the bus j; min
ijP , min

ijS  – the inferior limit of the 

ijP  and ijS  power. 

Within these constraints, if the upper limitation 
of the power flow through the ij network element 
is considered, then no congestions would appear. 

 the following constraints refer to the control 
variables: 

 min max
gi gi giP P P , i G\ e   ;  

 min max
i i iU U U , i G    (6) 

 min max
ij ij ijK K K , ij T   ; 

  min max
ij ij ij , ij T       

 the objective function contains in addition the term 
corresponding to the congestion penalty cost: 

 ( ) ( - )i g i ij ij ij
i G ij R

min OBF C P TP S S

 

      (7) 

where the generated power cost characteristics ( )i giC P  

have a quadratic form: 

 2( ) ,i gi i gi i gi iC P a P b P c i G      , (8) 

ijTP  – the penalty cost of the apparent power upper 

limit exceed through the ij network element; 
ijS  being 

defined as follows: 

 
if

,
if ( )

max
ij ij ij

ij max max
ij ij ij

S S S
S ij R

S S S


 

 


 (9) 

A non linear optimization problem with constraints is 
obtained. It is solved using the penalty function method, 
associated with the generalized Lagrange multiplier and 
the Fletcher-Reeves gradient methods. The algorithm is 
entirely presented in [11]. 

The transmission network optimal expansion method 
has been selected based on several arguments [17]: 

 it has to provide a high degree of generality, to 
represent an useful instrument for every transmission 
system operator; 

 the Romanian transmission system operator is 
focusing on several transmission expansion scenarios 
more or less realistic regarding the consumed and 
generated power evolution; 

 data provided for the TNEP studies are more or less 
characterized by a high degree of confidence. 

The TNEP problem within complex power systems 
is approached as a large scale nonlinear optimization 
problem. A heuristic searching model within the suitable 
solution area is proposed, having a quasi-dynamic back-
ward-looking character. A multi-criteria objective function 
is used including: power system operation expenses, power 
system expansion investments expanses, reliability elements 
(synthesized using a risk factor) and total available trans-
mission capacity.  

The quasi-dynamic backward-looking character is proved 
by the fact that the TNEP solution is established only for 
the last year of the analysis.  

The optimization process has a multi-criteria character. 
The qualitative comparison of the solutions is based on 4 
criteria (they may be considered within a single OBF and 
weighted accordingly): 

 1st criterion refers to the operation cost. The information 
is provided by the power system operating condition 
analysis and OBF computing; 
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 2nd criterion refers to the yearly investment expenses 
related to new transmission line construction. 

Due to several difficulties related to the quantification 
of the investment expenses, within the paper, the total 
length of the candidate transmission lines is taken 
into account. This approach is sustained by practical 
considerations: the case study refers exclusively to 
400 kV OHLs construction, according to the real 
situation within Romanian power system; 

 3rd criterion refers to the reliability of the transmission 
network, considering a risk factor [12], [13]; 

 
 max

% 1 1

1 1

,

100

n n
k k k k k

r ij ij
k k

n n
k k

k k

q r q P S S ij R

r

q q

 

 

   

  

 

 

 

 
  (10) 

where: qk – disconnection probability of the kth OHL; 
nl – OHLs number considered for the contingencies; 

k
ijS  – apparent power flow through the ij network element, 

in case of k network element disconnection; max
ijS – maxi-

mum apparent power allowable admissible limit through 
the ij network element; rk – congestion appearance probability 

in case of k network element disconnection; 
1

n
k k

k

q r





 – 

total congestion probability (all N-1 contingencies).  

 4th criterion refers to the total available transmission 
capability (TATC) of the power system [14], [15], [16]: 

  
max

ij ij

max
ij ij

ij L

S S

TATC S S




   (11) 

All the notations have the significance previously 
presented. 

The "partial" OBF has the following form: 

 

( ) ( - )i g i ij ij ij
i G ij R

1 i 1 1
i TL

min OBF C P TP S S

w I w r w TATC



 



  

     

 


 (12) 

where: Ii  – refers to the 2nd criterion; TL – set of new 
transmission line to be constructed; ri – risk factor; TATC – 
total available transmission capability; wi, i = 1, 2 ,3 – 
weighting factors. 
 
 

3. CONSUMED POWER FORECASTING 
METHODOLOGY 

 
Let us consider a period of na years, the consumed 

power being known. Based on these data, the consumed 
power are forecasted for the following (nf – na) years. 
The influence of a random component is taken into 
consideration [13]. 

According to the forecasting activity experience the 
use of a polynomial second order function is recom-
mended. Following this line, the least square method 

is applied, considering a polynomial of second degree 
m = 2 [11]: 

 2
2 0 1 2( )P x a a x a x      (13) 

The values of the ai coefficients are established 
according to [11]. The average consumed power forecasted 

values 1j a fy , j n ,n  are obtained. 

Finally the superior and inferior limits are established, 
considering the probability p [%]: 

 1
max
j j j a fy y , j n ,n    ; 

 1
min
j j j a fy y , j n ,n    (14) 

where  j  is computed as 

 

2
2 2 2

2

1

( )1
1

( )


 
 

 
      

 
  


a

j
j n

a
k

k

x x
K

n
x x

 (15) 

where 2  – standard deviation of the  y variable: 

 2 2

1

1
( )



   
an

k
a k

y y
n

 (16) 

Considering the 2
L/ ,nK t  (– the value for the 

Student distribution, 1  L an n m  – the number of the 

freedom degrees), the necessary correction considering 
the probability p is introduced: 

 % 100 (1 )p      (17) 

 
 

4. SOFTWARE TOOL 
 

According to the mathematical model for TNEP 
(Section II) and the power flow probabilistic approach 
(Section III), a software tool is developed. It is designed 
in Matlab environment enjoying the entire characteristics 
specific to Microsoft Windows operating systems, having 
a user friendly interface [11]. A client-server application 
has been developed. 

A script file containing the topology, the parameters 
and the specific elements of the power system is used. The 
data base corresponding to the operating condition of the 
power system is extracted from the Powerworld software.  

The new values for the consumed power are loaded 
using another script file. The contingencies are carried-
out also using the same script file; they are not manually 
effectuated by the user.  

Once the software tool is launched, the user is 
requested to enter the desired number of samples. It 
allows the user to select between the events that he is 
going to consider: generation of the consumed power 
samples and generation of the contingencies. The power 
flow is computed, in concordance with the random event 
considered, using the same script file. 
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5. CASE STUDY 
 

The case study is carried-out for the Romanian 
Power System. It has 145 buses (46 P-U, 89 P-Q,) and 

193 branches. Within the power system the buses at 
medium voltage (real generating groups), 220 kV, 400 kV 
are represented (Fig. 1). 

 

 
Fig. 1. Transmission network within the Romanian Power System 

6. RESULTS AND DISCUSSIONS 
 
The following OHLs are considered as candidates 

for transmission network expansion: 
 400 kV transmission corridor in the North-East side 

of the Romanian Power System (Suceava-Roman-
Bacau-Gutinas) (Fig. 2); 

 400 kV transmission corridor: Brasov-Stilpu-Gura 
Ialomitei-Cernavoda (Fig. 4); 

 400 kV transmission corridor: Mintia-Tarnita-Gadalin-
Bistrita-Suceava-Balti (Fig. 5); 

 400 kV OHLs: Brazi-Teleajen-Stalpu, Bradu-Sarda-
nesti-Tantareni, Isaccea-Vulcanesti (Fig. 3, 6, 7); 

Based on the consumed power within the period 
2000-2009, a forecast has been performed for the period 
2009-2018. 

The 2nd stage of transmission expansion refers to the 
generating unit. The following evolution has been con-
sidered (Fig. 8): 

 29268 – 4 x 250 MW groups (pumped-storage power 
plant); 

 29286 – 2 x 330 MW groups; 
 28904 – 2 x 330 MW groups; 
 28021 – 1 x 200 MW group; 
 29279 – 1 x 200 MW group; 
 29277 – 1 x 330 MW group. 

Considering the interest of the TSO regarding the 
wind energy, wind farms have been considered within 
several buses (1300 MW maximum power) (Fig. 9). 

The power system has the following one-line diagram 
(Fig. 10) based on all the expansion scenarios previously 
presented. 
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Fig. 2. Suceava-Roman-Bacau-Gutinas 400 kV  

transmission corridor 

 
Fig. 3. Brazi-Teleajen-Stalpu 400 kV OHL 

 
Fig. 4. Brasov-Stilpu-Gura Ialomitei-Cernavoda  

400 kV transmission corridor 

 
Fig. 5. Mintia-Tarnita-Gadalin-Bistrita-Suceava-Balti 400 kV transmission corridor 
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Fig. 6. Bradu-Sardanesti-Tantareni 400 kV OHL 

 

Fig. 7. Isaccea-Vulcanesti 400 kV OHL 
 

 

Fig. 8. Generation units’ evolution 

 

Fig. 9. Wind farm consideration 

The 2018 year forecasted operating condition has been 
used. In case of probabilistic modelling of consumed powers, 
the analysis did not revealed any special situation. The 
power system is robust, characterized by reduced loadings 
of the network elements within the base case. 

In case of power flow considering random N-2 
contingencies, in the following, several conclusions are 
briefly presented. 

 simultaneous disconnection of the 28012-28024 
220/400 kV autotransformer and the 28083-28084 
220 kV OHL  is leading to the congestion of the 220 
kV 28074-28075 OHL; 

 situations when no valid operating condition cannot 
be obtained are highlighted in case of double contin-
gencies implying the 28012-28024 400/220 kV 
autotransformer.
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Fig. 10. One-line diagram of the power system 

 
Fig. 11. Power transaction corridors 
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The transactions performed within the same power 
system or cross-border ones are representing another 
characteristic of the new deregulated environment. Con-
sidering this fact, different operating conditions with 
important power transactions (hundreds of MW) and 
increased consumption have been analyzed (Fig. 11):  

 1000 MW imported from Dobrudja (500 MW) and 
Varna (500 MW) and exported through the tie-lines 
with the Hungarian power system (Sardorfalva – 
500MW and Bekescsaba – 500 MW); 

 900 MW injected through the 400 kV tie-line with 
Pancevo (Serbian power system) and exported to the 
Moldavian Republic. 

 
 
7. CONCLUSION 

 
The expansion planning solutions previously presented 

are rightfully only if the entire expansion scenario regarding 
the generating units is accomplished. This fact is sustained 
in case of highly increased consumed power or significant 
power transfers within the main transmission corridors.  

The 28021 generating units’ expansion is leading to 
the avoiding of the congestions highlighted within the scheme 
prior to the expansion scenario.  

The appearance of the 400 kV corridor Suceava-
Roman-Bacau-Gutinas avoids the issues regarding the 
disconnection of the Gutinasi autotransformer.  

The 400 kV transmission corridor Brasov-Stilpu-
Gura Ialomitei-Cernavoda allows an increased amount of 
generated power to be evacuated from the nuclear power-
plant area. 

The necessity of a pumped-storage power-plant is fully 
sustained for the proper operation of the nuclear power-plant. 
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