POSSIBLE USES OF GEOTHERMAL ENERGY IN THE SACUIENI AREA

SETEL A., ANTAL C., SEBESAN M. University of Oradea, Universității no.1, Oradea <u>setel_aurel@yahoo.com</u>

Abstract - The paper presents information about the measurements conducted on Săcuieni geothermal reservoir and about estimated calculations on the possibility of using geothermal energy in the area

Key words: Geothermal Energy, Săcuieni

1. INTRODUCTION

Săcuieni geothermal reservoir

It is located on an area of about 25 km^2 and there is an outdated heating system that has technological loss of 40%.

Fig. 1. Location of the Săcuieni geothermal reservoir

The geothermal aquifer is located in the poorly cemented sands and sandstones from the Upper Pannonian base. Impermeable formations from the roof and shelter, which serve as screen, are made of clay and marl.

In Table 1 are presented the main characteristics of the aquifer.

 Table 1. The main characteristics of Săcuieni thermal aquifer

PARAMETER	SĂCUIENI AREA	
ROCK		
density	2690 Kg/m ³	
porosity	25%	
permeability	700-2000 mD	
compressibility	4,97 x 10⁻¹⁰ m²/N	
specific heat	837 J/KgK	
thermal conductibility	2,5 W/m ⁰ K	
caloric capacity	2251,5 KJ/ m ³ K	
WATERS		
density	977 Kg/m ³	
viscosity	0,32 x 10⁻³ s N/m²	
volume factors	1,025	
specific heat	4208 J/KgK	
thermal conductibility	0,673 W/mK	
total compressibility aquifer	$0.23 \times 10.10 \text{ m}^{2}/\text{N}$	
(rock + water)	7,55 X 10-10 III2/1N	
total caloric capacity aquifer	2800 K 1/m2K	
(rock + water)	2007 NJ/1115N	

The geothermal gradient values determined in deep boreholes executed in the Sacuieni city area are presented in Table 2.

INDICATIVE OF THE WELL	GEOTHERMAL GRADIENT (⁰ C/Km)
F4055 Sacuieni	64
F4043 Ciocaia	64
F4043 Ciocaia	63
F4057 Sacuieni	57
F4056 Sacuieni	57
F4031 Sacuieni	57
F4058 Sacuieni	53

2. EXPERIMENTAL DATA

Chemical characteristics of the geothermal water produced through the Sacuieni wells (ion concentrations in mg/l). These characteristics are shown in Table 3.

Nr crt.	Chemical Characteristics	Wells 4058	Wells 1704	Wells 4691
1.	pН	7,88	8,6	7,7
2.	Na ⁺	1456,75	1178,055	1406,452
3.	K ⁺	193,94	157,322	187,152
4.	Ca ²⁺	25,7	54	20
5.	Mg ²⁺	3,9	0,617	1,236
6.	Cl ⁻	828,87	474,27	776,130
7.	SO4 ²⁻	27,6	14,814	22,632
8.	HCO3 ⁻	2596,77	2506,1	2361,888
9.	SiO ₂	53	40	66,5
10.	Fe ²⁺	0,22	0,13	0,34
11.	NH ₃	-	0,44	-
12.	CO ₂	1998	2010	1890
15.	Mineralizație	12208	10560	8900
16.	H ₂ S	-	-	-
17.	Fenoli	2,04	-	1,06

Table 3. Ions concentrations in mg / l

Fig. 2. The temperature dependence of the saturation index (log Q / K)

The values of the saturation indices for the minerals that may separate by cooling geothermal waters from 4076 Sacuieni well, at different temperatures in 2010 - January.

Table 4. Values of saturation indices

Temp. °C	Log.Q/K (Anhidrit)	Log.Q/K (Calcit)	Log.Q/K (Calced.)	L Log.Q/K (Cuarţ)	Log.Q/K (Talc)	Log.Q/K (Wollast.)	Log.Q/K (Crisotil)	Log.Q/K (Sil.amorf.)
79	-2,495	0,238	0,009	0,382	-1,390	-5,151	-3,091	-0,712
75	-2,476	0,352	-0,017	0,293	-0,506	-4,976	-2,810	-0,801
60	-2,561	0,497	0,077	0,360	-1,718	-5,227	-4,302	-0,791
45	-2,624	0,046	0,224	0,548	-2,846	-5,980	-5,824	-0,592
20	-2,745	-0,003	0,373	0,729	-3,895	-6,555	-7,456	-0,456

Fig. 3. The temperature dependence of the saturation index (log Q / K).

In order to establish as accurate as possible the possibilities of using the geothermal energy several simulation tests have been conducted on the geothermal wells in the area. The results of the tests are shown in the following Tables and Figures

Table 5. Simulation Test Well 4691 Săcuieni

Q	S	s/Q
1/s	(m)	(m/gi/min)
8	16	0,152
16	33	0,156
23	48,5	0,160

Figure 4.Simulation TestWell 4691 Săcuieni

Table 6. Simulation Test Well 4076 Săcuieni

Q	S	s/Q
l/s	(m)	(m/gi/min)
5	5,8	0,088
10	12	0,091
15	18,5	0,093

ISSN 2067-5534 © 2014 JSE

Figure 5.Simulation Test Well 4076 Săcuieni

3. DETERMINATION OF THE BUILDINGS FOR GEOTHERMAL HEATING

The volumes calculated for the buildings in Săcuieni city are shown in Table 7

City	High	Sport's	ANL	Houses
Hall	school	hall	block	(3200
			S	houses in
				Sacuieni)
2000	11437	3750 m^3	648	250 m^3 /
m ³	m ³		m ³	house

Table 7. Volume calculation for the buildings

Currently for heating and tap hot water the wells are used: 4076, 1704, and 4691 with a flowrate of 6 1/s, with a temperature of $86^{\circ}C$ for each well (18 l/s total flowrate).

The necessary of tap hot water is 26829 m3/month (10 l/s) for Săcuieni city residents.

Thermal calculation

Heat demand: 108 979 W City Hall 1689 m³/ month (0.65 l/s) geothermal water Heat demand: 398 862 W College 6183 m³/ month (2.39 l/s) geothermal water Heat demand: 160 281 W Hall Sports 2485 m³/ month (0.96 l/s) geothermal water Heat demand: 51675 W ANL 801 m³/ month (0.31 l/s) geothermal water Heat demand: 16737 W / House 53558400 W / 3200 houses 0.1 l/s/house geothermal water **The results of the calculations and interpretation of results** Available flowrate for heating 8 l/s (18 l/s – 10 l/s) Necessary flowrate for heating City Hall, High school, Sport's hall, ANL 4.3 l/s Available flowrate for houses heating 3.7 l/s (37 houses)

By using deep well pumps in each well, the total flowrate can be increased at 118 l/s. In this case, the available flowrate for houses heating is 103.7 l/s (1036 houses).

4. CONCLUSION

Given the simulations carried out at the wells, simulations showing that the exploitation can be made up to a total flowrate of 118 l/s, it is recommended the usage of deep well pumps in order to obtain the required flows and to provide the heating and tap hot water necessary to the Sacuieni city.

REFERENCES

[1]. Bendea C., Gavrilescu O, ş.a., - Geotermalism și ape Geotermale, Editura Universității din Oradea, Oradea, 2003

[2]. Gavrilescu O., Maghiar T. ş.a. - The geothermal system from the University of Oradea - a new strategy simulation for the heat station, International Conference RSEE'98, Felix SPA., Mai 1998.

[3]. Gavrilescu O., Maghiar T., ş.a. - Simulation of the Geothermal Binary Power Plant's Heat Exchangers From The University of Oradea - Computer Science and Reliability, Session B2, International Conference RSEE'2000, Felix Spa, May 2000.

[4]. Setel Aurel, Antal Cornel, Ovidiu Gavrilescu, Marcel Rosca, Energia Geotermala in Romania, Editura Universitatii din Oradea, ISBN 978-606-10-0060-9, 2010.

[5]. Setel Aurel, Antal Cornel, Ovidiu Gavrilescu, Simona Bârsan, Petru Enciu, Cristina Dumitrică, Alin Iacobescu, [6]. Dana Bococi Utilizarea durabilă a resurselor regenerabile de energie, Energia Geotermală, Editura Risoprint Cluj – Napoca, ISBN 978-973-53-0415-7, 2010.